Wi-Motion: A Robust Human Activity Recognition Using WiFi Signals
نویسندگان
چکیده
منابع مشابه
Robust Indoor Human Activity Recognition Using Wireless Signals
Wireless signals-based activity detection and recognition technology may be complementary to the existing vision-based methods, especially under the circumstance of occlusions, viewpoint change, complex background, lighting condition change, and so on. This paper explores the properties of the channel state information (CSI) of Wi-Fi signals, and presents a robust indoor daily human activity re...
متن کاملA Survey of Human Activity Recognition Using WiFi CSI
In this article, we present a survey of recent advances in passive human behaviour recognition in indoor areas using the channel state information (CSI) of commercial WiFi systems. Movement of human body causes a change in the wireless signal reflections, which results in variations in the CSI. By analyzing the data streams of CSIs for different activities and comparing them against stored mode...
متن کاملTracking Human Mobility Using WiFi Signals
We study six months of human mobility data, including WiFi and GPS traces recorded with high temporal resolution, and find that time series of WiFi scans contain a strong latent location signal. In fact, due to inherent stability and low entropy of human mobility, it is possible to assign location to WiFi access points based on a very small number of GPS samples and then use these access points...
متن کاملRobust Indoor Human Activity Recognition Using
Wireless signals–based activity detection and recognition technology may be complementary to the existing vision-based methods, especially under the circumstance of occlusions, viewpoint change, complex background, lighting condition change, and so on. This paper explores the properties of the channel state information (CSI) of Wi-Fi signals, and presents a robust indoor daily human activity re...
متن کاملHuman Activity Recognition Using Robust Adaptive Privileged Probabilistic Learning
In this work, a novel method based on the learning using privileged information (LUPI) paradigm for recognizing complex human activities is proposed that handles missing information during testing. We present a supervised probabilistic approach that integrates LUPI into a hidden conditional random field (HCRF) model. The proposed model is called HCRF+ and may be trained using both maximum likel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2948102